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SEMI-INVARIANT FORM OF EQUILIBRIUM STABILITY CRITERIA IN CRITICAL CASES* 

L.G. KURAKIN and V.I. YUDOVICH 

Expressions are given for the first coefficients of the normal form of the 

equations in the neutral equilibrium manifold of an autonomous system in 

the basic critical cases, in terms of the neutral eigenvectors of the 

linearized system and its conjugate. Using the reduction principle /l/, 

the stability criteria previously obtained by various authors in critical 

cases take an explicit form, which is very convenient for calculations 

and does not involve the restriction of finite dimensionality. 

If the equilibrium stability spectrum of a non-linear autonomous system of differential 

equations contains a point on the imaginary axis (neutral spectrum), while its remaining part 

is inside the left half-plane, the answers to the questions on stability, asymptotic stability, 

and instability, depend on the nature of the non-linearity and cannot be given by an analysis 

of justthe linearized system. There have been studies of these so-called critical cases, 

starting with Lyapunov's calssical work /2, 3/. The results so far obtained have been 

classified and considerably supplementedin/4/**,(**See also, E.E., Shnol' and L.G. Khazin, 

"On the stability of stationary solutions of general systems of differential equations close 

to critical cases", Preprint In-ta prikl. matem. AN SSSR, Moscow, 1979, No.91; L.G. Khazin 

and E.E. Shnol', "On soft and hard loss of stability of stationary solutions of differential 

equations", Preprint In-ta prikl. matem. AN SSSR, Moscow, 1979, No.128.) where the critical 

cases are classified according to the co-dimensionality of the degeneracy in the space of all 

possible holornorphic systems. In the case of weak degeneracy, i.e., in all cases of co- 

dimensionality of degeneracy less than or equal to two, with a single exception (two pairs of 

pure imaginary eigenvalues, resonance 1: 3) of co-dimensionality three, there are explicit 

critieria for asymptotic stability and instability. They are expressed by striet inequalities 

for several Taylor coefficients of the right-hand side of the so-called model system. The 

latter splits off from the normal form of the initial system when the leading terms are 

discarded, and its order is equal to the total multiplicity of the neutral spectrum (dimension- 

alty of neutral subspace). In the long run, the application of criteria toa specific system 

amounts basically to evaluating the coefficients of the model system. 

Below, we give explicit expressions for these coefficients in "semi-invariant" form, i.e., 

we use the Jordan basis only in the neutral subspace, and not in the entire space. Nowhere in 

these expressions does the system dimensionality appears, so that they can also be used for 

infinite-dimensional problems, e.g., for systems of partial differential equations. 

The impossibility of reducing a system to normal form in the general infinite-dimensional 

case tells us that it likewise cannot be done for finite-dimensional problems. We can expect 

that, even for systems of ordinary differential equations, the simplest approach is to use 

these expressions possibly for computer calculations. The main part of our paper is an 

evaluation of the neutral root vectors of the linearized system and its conjugate, and also 
the solution of certain inhomogeneous algebraic equations. Of course, we can only study the 

multiplicity of the spectrum and the corresponding Jordan structure of the system in the 
neutral subspace, in those cases when the system contains parameters, for individual values 

of which (which have to be determined) degeneracy occurs. In other cases, incidentally, the 
multiplicity is defined by the general properties of the system. 

The two essential features of our present study are application of the reduction principle 

of /l/, according to which it suffices to consider the contraction of the system to the neutral 
manifold of equilibrium, and the reduction of the complete system to the partially normal form, 

in which we discard only those non-resonance terms which contain netural variables only,inall 
the equations at once. 

The transition to a system in the neutral manifold is justified for finite-dimensional 

systems by the reduction principle of /l/, and may also be justified for those infinite- 
dimensional systems for which a netral manifold theorem holds and for which there is a suitable 
reduction principle. 
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1. Formulation of the problem and description of method. Consider an autonomous 
real differential equation in R" with zero equilibrium 

U* == f (u) = Au + g (u), g (IL) = K, u- + K3US + ., f (0) = 0 (1.1) 

Here, u--f(u) is an analytic vector field, defined in the neiqhbourhood of 0~ H" (it 
will be clear from what follows that each of the following results holds for fE C”‘,k< 3),A : 
R’“-R” is a linear operator; K,,,um is a homogeneous operator u+ K,,dn of degree m, acting 
in R”, and defined by the m-linear mapping (u,, up,. . ., u,,~) --f K,, (u,, us,. .., IL,~), where K,,,u" 7.. K,,, 
(u, u,. . .I u); u,, u2,. . .> u,,,, CL E R”. A symmetric K,,,(u,, u?,..., un,) can be taken, though this is 
not essential. 

We assume that the spectrum a(A) of operator A can be written as the union of pairs of 
spectral sets cl(A) and n,(A), where U, = U,(A)= {h:hE o(A), Reh<O} lies strictly in the 
left half-plane, and uO = a,(A) = {h:hf~ u(A), Reh = 0) lies on the imaginary axis. 

Corresponding to spectral sets co and u1 we have the spectral subspaces X,, X, and 
spectral projectors PO, P,, 

P,= S(hZ-_-1)-w, i-0, 1 

r, 

Here, the contour ri : fIDi (D,, 17 D, -- y) is the smooth boundary of the bounded domain Di 
of the complex plane, while ui c Di. 

We shall call X0 the neutral subspace of the operator A, and X, the stable subspace. 

It follows from /l/ that, in a neiqhbourhood VCR” of the point 0 there is an invariant 
submanifold M,, C V of Eq.(l.l), which touches the netural subspace X, at the point 0. Here, 
Al, is the graph of a mapping P: V,,+ X, (V,C V fl X,) of the neiqhbourhood of zero of the 
subspace X, into X,. 

The invariant submanifold M,will be called the netural manifold (it is sometimes called 

the central manifold /5/J. 

The problems of stability of the zero equilibria of Eq.tl.1) and of contraction of this 

system onton/O are equivalent (the reduction principle /l/). 

We will write (1.1) as the system 

where Ai is the contraction of the operator A onto Xi. We introduce new variables 50 = Q. 
& = x1 - F (2,). The neutral manifold is given by the equation E1 = 0, and the system (1.2) 

takes the form 

Eo' = P,f* (E,, E, + F (E,)) (1.3) 
El' = P, -F' (5lJ PO) f* (L 51 + F (Eo)) 

By the reduction principle, it suffices to study the stability of the zero equilibrium 

of the equation in the neutral manifold 111, (El = 0) 

E,,' = pof* (Eo, F (E,)) (1.4) 

The mapping F can be sought as the Taylor series 

F (E,) = F&o2 + F&o3 + . . (1.5) 

Here, the mapping Fi : go + b’,Eo’ (i ::: 2.3.. . .) is a symmetric vector-valued form of the 

i-th degree in X, with values in X,. 
Series (1.5) is regarded as asymptotic. We know that, though it may prove to be divergent 

/l/, in each of the critical cases considered below we only need to known its first few terms. 

To find F we obtain from the invariance condition the equation 

P,f, (50, F (5,)) = F' (E,) P,,f, (50, E’ (Ed) (1.6) 

Substituting series (1.5) into (1.6) and equating terms in like powers on each side, we 

obtain a system of equations for the forms Fi (i = 2,:3,. .). 
Replacing y' = E, - G(EO) (G: Vv,,+ X,) we reduce Eq.cl.4) to the normal form /6/ up to a 

certain order. 
In each of the critical cases considered below, the normal form is defined uniquely. 

If it is not uniquely defined, as e.g., in the case of a Jordan cell, it is a matter of 

indifference which definition is chosen, provided that there is a stability criterion for it. 

The reduction of Eq.cl.4) to the normal form is sometimes greatly simplified if we seek 

F and G in the form p = I',T, G = P,I’, and define the mapping T : T/,-t V in such a way that 

the change of variables u' = u - ?7(zO) in Eq.(l.l) or in the equivalent system (1.3) decreases 
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the non-resonant terms which contain x0. 

In each critical case considered below, the results are given according to the following 

scheme: 

1) the conditions for degeneracy of the linear part are found. The neutral spectrum a0 

is found and the projector P, is introduced; 

2) the equation in the neutral manifold M, is given in the normal form. Only those terms 

of the expansion which participate in the stability criterion are written; 

3) the stability criterion in the sense of /4/ is given; i.e., the set of strict inequal- 

ities which ensure the asymptotic stability or instability of the zero resonate *. (*For more 

details and some cases not considered here, see: L.G. Kurakin and V.I. Yudovich, "On critical 

cases of Lyapunov stability," Rostov on Don, 1985, Dep. at VINITI 17.07.85; No.5132-85) 

We use the notation below: p is the co-dimensionality of degeneracy of the critical case, 

Kzo (u, c)= K, (u, 2.) + K, (u, u), K," (u", u) = K, (u, u, c) $- K, (u, c), u) + K, (u, u, u). 

2. The Case Of a Simple Zero eigenvalue. Neutral spectrum u0 = (0). Here, 0 is a 
simple eigenvalue, and the corresponding eigenvectors of the operator A and its adjoint A* 
are 'p, 6) 

Arp = 0, A*@ = 0, (~,a)= 1 

The projector onto the neutral subspace X, is P,u = (u, @)cp. 

The equation on the neutral manifold in the normal form is 

z 0' = a2.ro2 + agzo3 + ad.rol + . . 

a2 = (K,cp', Q), a8 -= (K,' (cp, ZJ f K&, Q) 

a4 = (K,' (cp, zl) + K,z,* f K,O ('o', ~2) + K,v', a)) 

z1 = -A, -l(LzO(v, 2.J + L,$ - 2a,z,), zz = -Al-'L,cp' 

where A,, Li*L,' are the contractions onto Xl of respectively operators A,(Z - /)O)Ki, (I -P&K,'. 

Stability criterion. Let ah be the first non-zero Lyapunov quantity (case k = k). We 

know (Lyapunov) that, for even k, the zero equilibrium is unstable, and for odd k, it is 
unstable when ar,> 0 and stable when ah. < 0. 

3. The case of one zero and a pair of purely imaginary eigenvalues. Neutral 

spectrum c0 = (0, *ia}, o>O. These eigenvalues are simple, while the corresponding eigenvectors 
of the operators A, A* are {cp, 'pl, R*), W, ml, ml*): 

Arp = 0, Acp, = imp,, Aq,* = -iocp,* 
A*@ : 0, A*@, = - io@,, A*@,,* = io@,* 

(cp, 0) = (cpl, 01) = (WI*, @I*) = 1 

The projector onto the neutral subspace X, is 

P,u = (u, Q) 'p + (UT @I) 'pl + (4 @I*) 'cl* 
The equation in the neutral manifold in the normal form is 

y' = a,,y' + a,,y,y,* + a,,y3 -iI . . ., y,' = iwy, f a2,yyl f . . . 

y = (Y'. @), y, = (~'7 @,)v a,, = (Kd, @) 

a ,* =T (IGo (v,, (P,*), @), a,, = (K,' (T, co,), a),) 

a 13 = (K,O (z, q) _I- K,+', CD), z = -A-' (K,$ - a,,~) 

Stability criterion. If a,,#0 (p = 2), the equilibrium is unstable. If a,,=O(p=c3), 
we have stability under the conditions a,,Rea,,<O, a,,< 0, and instability when at least one 
condition is strictly violated. 

4. The case of n-tuple zero eigenvalue (Jordan cell). Neutral spectrum 
Is0 = (0). The eigenvalue of O-multiplicity n, the index v (0) = n, the corresponding eigen- 
vectors of the operators A,A* are 'pl,@,,. Let {(fz, (Pi,. . ., y,,) be associated vectors of the 
operator A, and {@,, ala,. ., @,,) associated vectors of A*, corresponding to the zero eiqenvalue 

Aq, = 0, Aqz = '~1, ‘4~3 = ~2, . ., Acp,, = (pn-1 
A*@,, = 0, A*@, = '&, A*@, = 'I),, . . ., A*'& = @,_, 
(‘pj,~‘n_,+1)‘1,(Cpl,,~,i)=O,j~1,2 ,..., ?Z;/i+l#n+l 

The projector onto the neutral subspace X, is 

P,U = z (U, (I)n_h+l) C+&; x: = 1, 2, . .) IL 

The equation in the neutral manifold in the normal form is 
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yj =yj+1-r..., y;= K(P,?, $1 Yl” -i- . . 
j = 1, 2, . . ., II - 1; y, = (u, @*++l), k -= 1, 2, . . .) n 

Stability criterion. If (K,cr,2, Q,) f 0 (11 ~~ TZ), the zero equilibrium in unstable. 

5. The case of 2~. pairs of purely imaginary eigenvalues without resonances. 
The neutral spectrum (T*= {& iw,.. .., & im,f, Wj>O, j = 1,2,..., n, where there axe no resonances 
of second and third order. These eigenvalues are simple, while the corresponding eigenvectors 
of A, A* are 

{CPW . ., %I, ‘cl * 7 * . .1 %*)3 WI,. . ., Q,, @I*,. . -, @n*) 
.4qj = iwl’pj, Acpj* = - iojqj*, A*@, = - iwjOj 
A*(Dj* = iojcDj*, (pj> Qj) = (Cpj*, @j*) =: 1, j = 1,2,. . ., n 

The projector onto the neutral subspace X, is 

P& = B [(U+ @j)qj + (Ur @j*) qj**l; j = 1, 29. , et 12 

The equation in the neutral manifold in the normal form is 

yj' = iojyj -+- y*Xajk 1 yb 1’ + . , ., j, k = 1, 2,. . ., n; 

Yj = (Y’t @,I 

ajj = (K2’ (zj, Tj*) + Kz” (rljjt Cpj) + K3’ ((P$, ‘Pj*), Oj) 

ajk = (Kz” (%kt Ylj) f K,O (Qjkr (ok) I- K,O (hjtt fPk*) i 

Ka” (Cpj, $%t %*I* @j), k f- i 
zj = (2iwJ - A)-‘&pi’ 
hjh_ = (i (Wk + Oj) Z - A)-’ K,O (Wh.t (fj) 

where n is any permutation of the indices 1, 2, 3. 

Stability criterion /7/. Co-dimensionality of degeneracy p = n. The zero equilibrium 
is stable if the system 

pj' = pjZ: (Ae alk)ph; k, j = 1, 2,. . ., n 

has no solutions of the type p>(t)= Cjr(t), r'= mr", cj> 0 (not all the Cj = 0) , neither 
increasing (m - I), for neutral (m = 0). 

Given any subset Jr (1, 2,..., n} , we define the truncation J of the matrix B = I] Re ajk I/ 
(j, k = 1, 2,. . ., n) as the matrix HJ = I( Reajk& j, kE 1. Checking stability amounts to con- 
sidering all possible systems fiJp3 = CJ, where all the components of the vector e,, are equal 
to +I. If at least one system has a positive solution (pi> 0,j EJ), the equilibrium is unstable. 
There are altogether 2'-1 such systems, and they must all be considered: suitable examples 
show that none can be neglected. 

If there is no such system, and no system BJpJ =- 0 has a positive solution, the equilib- 
rium is stable. 
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